Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Rep ; 40(2): 111040, 2022 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-35830791

RESUMO

Classification and characterization of neuronal types are critical for understanding their function and dysfunction. Neuronal classification schemes typically rely on measurements of electrophysiological, morphological, and molecular features, but aligning such datasets has been challenging. Here, we present a unified classification of mouse retinal ganglion cells (RGCs), the sole retinal output neurons. We use visually evoked responses to classify 1,859 mouse RGCs into 42 types. We also obtain morphological or transcriptomic data from subsets and use these measurements to align the functional classification to publicly available morphological and transcriptomic datasets. We create an online database that allows users to browse or download the data and to classify RGCs from their light responses using a machine learning algorithm. This work provides a resource for studies of RGCs, their upstream circuits in the retina, and their projections in the brain, and establishes a framework for future efforts in neuronal classification and open data distribution.


Assuntos
Retina , Células Ganglionares da Retina , Animais , Expressão Gênica , Camundongos , Retina/fisiologia , Células Ganglionares da Retina/metabolismo
2.
Int J Geriatr Psychiatry ; 35(2): 147-152, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31617234

RESUMO

OBJECTIVES: More than half of patients with major depression who do not respond to initial antidepressants become treatment resistant (TRD), and while electroconvulsive therapy (ECT) is effective, it involves anesthesia and other medical risks that are of concern in geriatric patients. Past studies have suggested that theta cordance (TC), a correlate of cerebral metabolism measured by electroencephalography, could guide treatment decisions related to patient selection and engagement of the therapeutic target. METHODS/DESIGN: Eight patients with late-life treatment resistant depression (LL-TRD) underwent magnetoencephalography (MEG) at baseline and following seven sessions of ECT. We tested whether the mean and regional frontal cortex TC were able to differentiate early responders from nonresponders. RESULTS: Five patients whose depression severity decreased by >30% after seven sessions were considered early responders. We found no baseline differences in mean frontal TC between early responders compared with nonresponders, but early responders exhibited a significant increase in TC following ECT. Further, we found that compared with nonresponders, early responders exhibited a greater change in TC specifically within the right prefrontal cortex. CONCLUSIONS: These results support the hypothesis that increases in frontal TC are associated with antidepressant response. We expand on previous findings by showing that this change is specific to the right prefrontal cortex. Validation of this neural marker could contribute to improved ECT outcomes, by informing early clinical decisions about the acute efficacy of this treatment.


Assuntos
Transtorno Depressivo Resistente a Tratamento/terapia , Eletroconvulsoterapia , Lobo Frontal/fisiologia , Ritmo Teta/fisiologia , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Resultado do Tratamento
3.
Neuroimage ; 199: 366-374, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31154045

RESUMO

Deep brain stimulation (DBS) is an established and effective treatment for several movement disorders and is being developed to treat a host of neuropsychiatric disorders including epilepsy, chronic pain, obsessive compulsive disorder, and depression. However, the neural mechanisms through which DBS produces therapeutic benefits, and in some cases unwanted side effects, in these disorders are only partially understood. Non-invasive neuroimaging techniques that can assess the neural effects of active stimulation are important for advancing our understanding of the neural basis of DBS therapy. Magnetoencephalography (MEG) is a safe, passive imaging modality with relatively high spatiotemporal resolution, which makes it a potentially powerful method for examining the cortical network effects of DBS. However, the degree to which magnetic artifacts produced by stimulation and the associated hardware can be suppressed from MEG data, and the comparability between signals measured during DBS-on and DBS-off conditions, have not been fully quantified. The present study used machine learning methods in conjunction with a visual perception task, which should be relatively unaffected by DBS, to quantify how well neural data can be salvaged from artifact contamination introduced by DBS and how comparable DBS-on and DBS-off data are after artifact removal. Machine learning also allowed us to determine whether the spatiotemporal pattern of neural activity recorded during stimulation are comparable to those recorded when stimulation is off. The spatiotemporal patterns of visually evoked neural fields could be accurately classified in all 8 patients with DBS implants during both DBS-on and DBS-off conditions and performed comparably across those two conditions. Further, the classification accuracy for classifiers trained on the spatiotemporal patterns evoked during DBS-on trials and applied to DBS-off trials, and vice versa, were similar to that of the classifiers trained and tested on either trial type, demonstrating the comparability of these patterns across conditions. Together, these results demonstrate the ability of MEG preprocessing techniques, like temporal signal space separation, to salvage neural data from recordings contaminated with DBS artifacts and validate MEG as a powerful tool to study the cortical consequences of DBS.


Assuntos
Artefatos , Córtex Cerebral/fisiologia , Estimulação Encefálica Profunda/normas , Magnetoencefalografia/normas , Doença de Parkinson/terapia , Percepção Visual/fisiologia , Adulto , Idoso , Córtex Cerebral/diagnóstico por imagem , Feminino , Globo Pálido/cirurgia , Humanos , Aprendizado de Máquina , Masculino , Pessoa de Meia-Idade , Análise Espaço-Temporal , Núcleo Subtalâmico/cirurgia , Adulto Jovem
4.
Neuron ; 100(5): 1149-1162.e5, 2018 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-30482690

RESUMO

Neuromodulators regulate circuits throughout the nervous system, and revealing the cell types and stimulus conditions controlling their release is vital to understanding their function. The effects of the neuromodulator nitric oxide (NO) have been studied in many circuits, including in the vertebrate retina, where it regulates synaptic release, gap junction coupling, and blood vessel dilation, but little is known about the cells that release NO. We show that a single type of amacrine cell (AC) controls NO release in the inner retina, and we report its light responses, electrical properties, and calcium dynamics. We discover that this AC forms a dense gap junction network and that the strength of electrical coupling in the network is regulated by light through NO. A model of the network offers insights into the biophysical specializations leading to auto-regulation of NO release within the network.


Assuntos
Células Amácrinas/metabolismo , Junções Comunicantes/metabolismo , Óxido Nítrico/metabolismo , Retina/metabolismo , Células Amácrinas/citologia , Animais , Cálcio/metabolismo , Feminino , Masculino , Camundongos Transgênicos , Modelos Neurológicos , Neuritos/metabolismo , Óxido Nítrico Sintase Tipo I/metabolismo , Estimulação Luminosa , Retina/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...